If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -4.9t2 + 18t + -70 = 0 Reorder the terms: -70 + 18t + -4.9t2 = 0 Solving -70 + 18t + -4.9t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by -4.9 the coefficient of the squared term: Divide each side by '-4.9'. 14.28571429 + -3.673469388t + t2 = 0 Move the constant term to the right: Add '-14.28571429' to each side of the equation. 14.28571429 + -3.673469388t + -14.28571429 + t2 = 0 + -14.28571429 Reorder the terms: 14.28571429 + -14.28571429 + -3.673469388t + t2 = 0 + -14.28571429 Combine like terms: 14.28571429 + -14.28571429 = 0.00000000 0.00000000 + -3.673469388t + t2 = 0 + -14.28571429 -3.673469388t + t2 = 0 + -14.28571429 Combine like terms: 0 + -14.28571429 = -14.28571429 -3.673469388t + t2 = -14.28571429 The t term is -3.673469388t. Take half its coefficient (-1.836734694). Square it (3.373594336) and add it to both sides. Add '3.373594336' to each side of the equation. -3.673469388t + 3.373594336 + t2 = -14.28571429 + 3.373594336 Reorder the terms: 3.373594336 + -3.673469388t + t2 = -14.28571429 + 3.373594336 Combine like terms: -14.28571429 + 3.373594336 = -10.912119954 3.373594336 + -3.673469388t + t2 = -10.912119954 Factor a perfect square on the left side: (t + -1.836734694)(t + -1.836734694) = -10.912119954 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 1.00/2.00(x-0.25)=0 | | 12x+11=10x | | 8x-7x+9=10-8 | | -4(-6x)= | | -2(m-7)=3m-6 | | -16x^2+266x-198=0 | | -1=x/6+4 | | -1[7x+6-7(x+1)]=4x-6 | | w/32+20=18 | | 0.7x+0.5*40=0.4(x+20) | | -4(4-2u)= | | 4+2n=2/3 | | x-2(x+10)=14 | | 3/8=-1/8m | | (15x^4)-(15x^3)+(15x)-15=0 | | 9x-5x+6=-30 | | c-(29)3/4=(10)1/4 | | x-16=3.5 | | 1/4x+5x=33x | | 500-15x=800-35x | | 4-m/5=8 | | 2--2= | | -5(-4u)= | | 14r+-3=-3+14r | | X+4/5=-8 | | 1/410+3=8 | | x+1.05=2.05 | | (z+4)+-7= | | 4x-23=6x+15 | | 5n-6+4n+1=7+2n+2 | | -9.5(3.5)+11.7=-70-5.1(-9.5) | | c-293/4=101/4 |